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Work done during the report period

The Pourth periodical report conceutrated on the

numerical solution of N.L.S. equation with varying coefficients.

The numerical treatmant is based on the analytical
solution developed in the third periodical report. The solution
is valid using periodic boundaries and a very slow variation of
the bottom compared with the period's length. The solution was
compared with other numerical schemes and yield satisfactory

results.

-

All technical details are presented in the

following paper.
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EVOLUTION OF uinnuuumunnmmmmasmt
VARYING BOTTOM
(Part 1I)

by R, Iusim and Y. Frostig.

Introduction

——2 The aim of this paper is to present quantitative informatiom
about the approximats solution of the non-linear Schroedinger

-~ le5-  equation with varying coefficlants and periodic boundsry

e
conditions WM@,ACCP“M it
with aumerical -olut:lm.'\ ]

1 A
In section I we preseat s brief review of the method developed amb
—&%Mhh based in the evalustion of an Munitial disturbence™
at every point, and local application of the analytical solution .,
givenby M. Stlzsete-st i (1) In section—ii-we providd quantitative
information sbout the variation of the local "inttial disturbancedss prrvsel
and m@n prasent the comparison of the solution
develeped-ia—I) vith numerical solutions. R‘
1. Review of the Met in the Previous rt
The problems to be solved is:
1y + g + 0 (O]0|20 =0 a.n
with the boumdary comdition

ol =1+ 280 %08 (2e1) 1.2)
20




Following Stiassnie and Krossynsky (1) we approximate the solution

of (1.1), (1.2) by the truncated Fourier series:

1
.l('!,l) - Dn(x)ez""ﬂ

ne-1

1.3

vhere D_(X) is the complex Fourier coefficieat of modulus Innl

and argument 8,

D, - lnnlc“..' (1.4)

The boundary condition at X = 0 implies that

|D°(°)' -1, a (o) =0
(1.5)
IDI(°).| =8, a,(0) = a

From substitutfon of (1.3) into the N.L.S. (1.1) the

following set of equations is obtained

dD
-2 2 2 -
1 37-+w(x bdp, |2 + 4[p,|2)p, + 203p8] = 0
(1.6)

$ 2:,—“ w(® [(2lpy|? + 3|p,|> - ¥, + 0204 = 0

where P » 8x2/y . The range of variation of P is 1 < P < 4. (see

Stiassaie, et al. (1)).

Assuming that the bottom varies so slowly that it may
be considered "locally constant”, then the solution given by

Stisssnie et al. (1) for constant depth can be applied locally.

T SRR

B . VOV

=N

AN




This solution is periodic in X. Assuming that the bottom is "locally

constant” means that it is nearly constant in the period of the

solution.
Defining:
Z(X) = ZIDl(x)I’ (1.7)
the exact solution of system (1.6) is given by the set
Jp j2 + 2z =1+ 282 (1.8)
1(P) +3/22¢ + [p-2(1428%)]2
eosl(uo-cl) - J—-LTszmg——L—Lu-— (1.9)
)
20 % (1.10)

1 - Sacb) E{P)=¢ cP-d)k'_d
Q_b-em[ a-c(P ¢) (b-4 cn

a - ¢(P) 1 + {ab a~d ¢ od
(a-e(P)) (b-d) (a~c

] ca? .11

; where cd = %E and sd = 2‘% represent the Jacobian elliptic functions
' of argument
y=- -k(hb)” ux (1.12)

and modulus k given by

earRdin, -

2 a=b) (e~d
=1~ L—%—)’(._c b-d) (1.13)
21(p) %
a=pP{1+{1 +—§-’-] 1 1.14)
. 3
1 2 141(P ¥
b = Jlea1+282)~p) 11+ [1- 2Ry 1 ) 1.1%)
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4
1 2 141 (P .
c=3 {4(1428%)-P] { 1- [1- TS TSN 1} (1.16)
21(P)1 .
d=P{1-[1+ z].} (1.17)
P

i1f I(P) > 0 or vice-versa, d given by (1.16) and c by (1.17) if
(P) < 0.

The approximate solution depends on two parameters: I(P) and the
local initial condition for Z: ¢(P). Given I(P) and €(P), Z(X) is

determined from (1.8) to (1.17). At the case of constant depth:
E(P) 3 const = 282 (1.18)

and I(P) = const = B2[ 282 4+ 4(1 + cos 2a) - 2P) (1.19)

Under the agsumption that the bottom is "locally constant"
in the sense previously mentioned, we derived in (2) the following

approximate differential equation for I(P).

1 +V E’:
——)

2 1a(
-
aI(P) _ _ F G-F) 7P (1.20)
F14 7 n 2P (4P 2
, 2P-1) 1(P

with the initial condition (1.19).
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Equation (1.20) can be easily solved numerically.
In order to derive equatfion (1.20) we assumed in that the initial

condition of Z(X) for local disturbance satisfies the condition

€= €(P) << 1, Ua have chosen as the local initial condition
€(P), the wminimal positive value of the oscilatory function Z(X),
The minimal value of Z(X) is found by equalling to zero its

derivative given by

%- —-“; 22(1428%-2) ) J2Pup-204280) )z - 1O (121)

(see Stiassnie et al. (1)).

If I(P) > O the minimal positive value of Z is given by

i
e(® = [4(14282)-P] (1 [ 1~ ——lﬂ%i—] e (1.22)
4(1+2p%)-p

and from (1.9) it can be seen that it correaponds to cos2(a o'“l) =]

If I(P) < O the minimal positive value of Z is given by
21(P) %

e =P{1-[1+ 2]}2(: (1.23)
P

and it corresponds to cos 2 (ao-al) - -1,
The approximate wave envelopey ‘('r,x) 1s given by
hﬂz-bnw)+nuun%4u-1ﬁ+
+ {3 21(P) + 2p2-29)% + 4zcos2e1)?} /82. (1.24)

where 8 1is the sign of cos (ul—uo).
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11._The behavior of I(P)

The right hand side of equation (1.20) is always negative for the

range of values of P considerated 1 < P < 4, yielding that I(P) is a
decreasing function of P. On the other hand, it can be easily seen that
I(P) £.0 is a solution of equation (1.20). That means that if the inicial
condition I(Po) is positive, the golution remains positive, and
asimptotic to the horizontal axis. If the initial condition is

negative, the solution remains negative. The expected behavior of the solution

i1s given in figure, 1.
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If I(P) = Q then eqs. (1.16) and (1.17) yleld c =d = 0 and
from (».13) we obtain k = 1. Then the period of the elliptic
functions in (1.11) is infinite (see (3)).

The solution Z(X) in this case is given hy (1.10) where

a-b €, tgh ;
[l (a-e b) sech‘y
2

Q= ] 2.1)
a-b € tgh'y
L Ferall 3 sechly

where a and b are givean by (1.14) and (1.15) respectively. From(1.1)) and
(2.1) it can be seen that Z(X)=0(e). This solution is unstable to
disturbances in the parameter I(P), giving rise to the oscillatory
solution (1.1C),(1.11) which grows from its minimal value Z = ¢ = 0(¢),
to its maximal value z = b.

For this reason all the numerical calculations are umstable
near the value I(P) = 0. On the other hand, when I(P) tends to zero,
the period of the oscillatory solution Z(X) tends to infinity, and
then our assumption that the bottom is nearly constant in a period
of the solution does not hold any more.

These ressons impose new restrictions in P. The permissible range
of variation of P must ensu.re the conditions {I(P)| >> 1, but I(P)
not nearly gzero.

From the numerical results we actually impose the condition
J1(p3} >o(1o'3),

The solution of equation (1.20) is compared with the one
obtained by solving numerjcally the set (1.6) and using the
equality

et s ey AR TINRSATE U RS AN
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I(p) = lnllz-[zlnllZuln‘,{z-mlnolzco-z(ul-ao)] 2.2)

Equation (1.16) was solved by means of the second oxder Runge

Kutta method, and by the trapezoidal rule, obtaining identical results.
System (1.6) was solved by the trapezoidal rule. In both cases "%

we considered the gimple case where P is linear om X:

. N Py
Forap ol

P= Po + 0.1X; Po = 2 starting at X = 0. The results are presented

-

in figure 2. Full lines represent the solutions obtained

2k e F

by (1.6) and (2.2), while dotted lines are the results from

2L

numerical solutions of equation (1.20).
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I111. Comparison between the solution presented in section I

and numerical solutions

In order to appraise the validity of the behavior predicted
by equation (1.20) and the amalytical solution (1.7) to (1.17), we
compare it with a reference solution obtained by means of numerical
schemes. In the first place we compare it with the numerical
golution of the set (1,6) obtained by means of the trapezoidal
rule. Figures 3 and 4 show the wave envelope lw(O,Xﬂ for the case
P = Po + 0.1X, L 2, a=0, 8=0.1,

These values correspond to the initial condition I(Po) = 0.0402.
Full lines represent the solution of the set (1,6) while dotted lines
are the results obtained by solving equation (1.20) and applying
(1.22), (L.11) to (1.17) and (1.24) at P = 2, P = 0.5 and P = 2,16.
Figures 5 and 6 represent the wave envelope Iw(O,T‘ when a = %/2,
B=0.1P=P4.1X, P =2, (i(po) = -0.0998). The full lines
represent the solution of set (1.6), and the dotted ones the
solution given by (1.20), (1.23), (1.10) to (1.17) and (1.24) at
P=2and P = 2.5. In both cases a very satisfactory correspondence
of the wave envelop's shape is observed.

On the other hand, the solution of set (1.6) is compared
to the numerical solution of the N.L.S. equation when P = 2 + 0.1X.
In order to solve the N.L.S. equation two independent alternative
numerical schemes were employed, obtaining identical results.

The first one is the Crank Nicholson scheme

e ,.,‘.w_mu e a el e e T Ty ) -

2 A RN it

Yy




AR Mg g E e A L I GRS I Lo BT

b e e
..ll_
n+l n n+l o+l n+l n _,n_.n
W R A S ST I
b § X + % ( Z + 3 )}
(AT) (AT)
Ol
+u“*(wﬂ-wf”L—L—3—4- -0 (3.1

n
where ¥y = ¥(T,,X), W ux), T, = (4=1)LT, X, = AX, AT are
J-1 equal segments that span the interval 0 < T < ! and AX are equal
intervals that span the X coordinate. The scheme is subject to the
initial condition (1.2) and to the boundary conditions wz = w;;
n _ N
wJ+l JJ—1°
In the second approach we seek an approximate solution of the
form
t
N |
4

wao - D (e inT (3.2)
n=-(N-1)

Given the set &“(Tj,x) i = -(n-1),...,0,1,...N, the corresponding 4
Fourter coefficientsb(zzn_l),..., Dél) 3...,DN(x) are found by means

of the Fast Fourier Transform, and conversely, given D(N-l)(x)""'

[
of the Inverse Fourier Transform.

D ,..,D“(x) the set o“(rl‘ip=-(s-1)....o,1,...u is found by means g

Substitution of (3.2) in the N.L.S. equation (1.1) yields:

1an 2
e + 1(2xn) Dn - 1uAn =0 (3.3)
D_n - Dn (n =0,1,...,N)

where Ah = Ah(x), n= -(X-1),..,0,..,N are the Fourier coefficients
of the set

lw“(rj.x)lz-v"(rj,x), § = ~(Ne1)yeey0,..N o

o e,

. S _ e e cem——————
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The solutiom of (3.1) is givea by

x 2 2
D, (0 = [D_(0) + 1u [ A ()al P 7Eq] 12N (3.4
-~ In n o "
which can be rewritten in the form
2 x+Ax 2 - 2
D*n(xMx) - [Dn(x) + 1ue-1(2m) x f ot (2m) tA“(t)dt] o 1(2mm)ax
x
a=0,1,...,N (3.5)
Assuming that the chosen increment AX is sufficiently small, the
integral in (3.5) is computed approximately as
x+Ax 2
WA () + A 0] [ et (FT ey, (3.6)
n n X
Substitution of (3.6) into (3.5) leads to the numerical scheme
Do(XMx) - DO(X) + AXiu(Ao(XMX) + AO(XWZ
3.7
2
Dy (X+4X) = £ D (X) + (1—En)(An(X+AX)+An(X))/(P~n )
n=1,2,...,N
2
where fn - e_“z'“) ax
Starting with the known values of Dn at level X, we proceed
v, to0 compute An(x) by means of the Fast Fourier Transform. We use this

value as a first guess for An(xux) and obtain an estimate for DB(X-MX)

from (3.7). The Past Pourier Transform and expression (3.7) are then
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applied iteratively until no change between two successive estimates
are detected, The process is then advanced a further step in X. The first
step uses as starting values the initial condition (1.2).

Figures 7 and 8 show the solution of the N.L.S. equation when
P= Po + 0.1x, P° = 2, for the initial conditions a= 0, 8 = 0.1
(I(Po)-0.0GOZ) and a= 0, B= 0.05 (I(Po) = 0.01000125) respectively,
while in figures 9 and 10 it can be seen the solution for the initial
conditions a = /2, 8 = 0.1 (I(Po) = -0.0998), Full lines in these
figures represent the solution of the N.L.S. equation, while dotted lines

repregsent the solution of system (1.6).
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Figure 3: The wave envelope |y(o,x)|.
P=240.1X, =0, g =0.1.
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Figure 4: The wave envelope |y{(o,x)]
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Figure 5: The wave envelope [y(o,x)|
Pe240.1X, a = w/2, 8 = 0.1,
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Pigure 6: The wave envelope TICR ]
P = 240.1X, a ="/ 8 ~ 0.1,
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Figure }: The wave emvalope [oCo m)|
pe240.1X, =0, 8 =0AC
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wave envelope

Figure 8: The
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¥igure 9: The wave envelope {9(o,%)|

P = 240.1X, a =~ v/2, 8 = 0.1
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i Figure 10: The wvave envelope |¥(o,x)]

P = 240,1X, a = x/2, 8 =0.1
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